Tian’s invariant of the Grassmann manifold

نویسندگان

  • Julien Grivaux
  • JULIEN GRIVAUX
چکیده

— We prove that Tian’s invariant on the complex Grassmann manifold Gp,q(C ) is equal to 1/(p + q). The method introduced here uses a Lie group of holomorphic isometries which operates transitively on the considered manifolds and a natural imbedding of ( P(C ) )p in Gp,q(C ). Résumé. — On prouve que l’invariant de Tian sur la grassmannienne Gp,q(C ) est 1/(p+ q). La méthode présentée dans cet article utilise un groupe de Lie d’isométries holomorphes qui opère transitivement sur les variétés considérées ainsi qu’un plongement naturel de ( P(C ) )p dans Gp,q(C ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal Degree Distance of Grassmann Graphs

Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u  d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.

متن کامل

Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation

We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in Rn. In these formulas, p-planes are represented as the column space of n £ p matrices. The Newton method on abstract Riemannian manifolds proposed by S. T. Smith is made explicit on the Grassmann manifold. Two ap...

متن کامل

A Star Product for Complex Grassmann Manifolds

We explicitly construct a star product for the complex Grassmann manifolds using the method of phase space reduction. Functions on C(p+q)·p ∗, the space of (p + q)× p matrices of rank p, invariant under the right action of Gl(p, C) can be regarded as functions on the Grassmann manifold Gp,q(C), but do not form a subalgebra whereas functions only invariant under the unitary subgroup U(p) ⊂ Gl(p,...

متن کامل

Ricci Curvature on the Blow-up of Cp2 at Two Points

It is well-known that the αG(M)-invariant introduced by Tian plays an important role in the study of the existence of Kähler-Einstein metrics on complex manifolds with positive first Chern class ([T1], [T2], [TY]). Based on the estimate of αG(M)-invariant, Tian in 1990 proved that any complex surface with c1(M) > 0 always admits a Kähler-Einstein metric except in two cases CP2#1CP2 and CP2#2CP2...

متن کامل

Simultaneous versal deformations of endomorphisms

We study the set M of pairs (f, V ), defined by an endomorphism f of F and a ddimensional f–invariant subspace V . It is shown that this set is a smooth manifold that defines a vector bundle on the Grassmann manifold. We apply this study to derive conditions for the Lipschitz stability of invariant subspaces and determine versal deformations of the elements of M with respect to a natural equiva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017